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Abstract 

This work updates the methods of Lumpkin and Johnson (2013) to obtain an improved 

near-surface velocity climatology for the global ocean using observations from undrogued and 

15-m drogued Global Drifter Program (GDP) drifters. The proposed procedure includes the 

correction of the slip bias of undrogued drifters, thus recovering about half of the GDP dataset; 

and a new approach for decomposing Lagrangian data into mean, seasonal and eddy 

components, which reduces the smoothing of spatial gradients inherent in data binning methods. 

The sensitivity of the results to method parameters, the method performance relative to other 

techniques, and the associated estimation errors, are evaluated using statistics calculated for a 

test dataset consisting of altimeter-derived geostrophic velocities subsampled at the drifter 

locations, and for the full altimeter-derived geostrophic velocity fields. 

It is demonstrated that (1) the correction of drifter slip bias produces statistically similar 

mean velocities for both drogued and undrogued drifter datasets at most latitudes and reduces 

differences between their variance estimates, (2) the proposed decomposition method produces 

pseudo-Eulerian mean fields with magnitudes and horizontal scales closer to time-averaged 

Eulerian observations than other methods, and (3) standard errors calculated for pseudo-Eulerian 

quantities underestimate the real errors by a factor of almost two. The improved decomposition 

method and the inclusion of undrogued drifters in the analysis allows resolving details of the 

time-mean circulation not well defined in the previous version of the climatology, such as the 

cross-stream structure of western boundary currents, recirculation cells, and zonally-elongated 

mid-ocean striations. 

Keywords: near-surface velocity climatology, ocean drifters, Gauss-Markov estimation, drifter 
slip bias, error analysis  
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1. Introduction 

A global climatology of surface ocean currents is desirable for a variety of applications. 

For example, the statistical moments of the ocean velocity (mean, variance, and covariances) are 

used in the study of linear geophysical instabilities, ocean energetics, and the turbulent transport 

of tracers and heat. In a Lagrangian framework, the fluctuations around the mean are used to 

infer eddy diffusivities and decorrelation time scales. Besides the investigation of the underlying 

ocean dynamics, the statistical description of the surface circulation is also relevant for ship 

routing, search and rescue operations, and for predicting the dispersion and transport pathways of 

biogeochemical tracers and of pollutants such as oil, microplastic, and floating marine debris. 

The drifters of the Global Drifter Program (GDP) currently provide the most accurate set 

of measurements of the near-surface ocean velocities at global scales (Lumpkin and Pazos, 2007; 

Maximenko et al., 2013). However, observations are scattered in space and time and often 

autocorrelated in both dimensions, making their decomposition into mean and fluctuating 

components a non-trivial exercise. A common approach involves ensemble-averaging data 

selected within spatial bins (e.g. Niiler, 2001; Fratantoni, 2001; Jakobsen et al., 2003; Reverdin  

et al., 2003; Maximenko et al., 2009; Zhurbas et al., 2014), however, this method has a number 

of associated biases whose effects are difficult to diagnose (Mariano and Ryan, 2007).  A 

particularly important source of uncertainty lies in the choice of bin size, whose definition 

involves a trade-off between the statistical reliability of the results and the resolution of the 

horizontal scales of the mean flow. Specifically, larger bins select more data points, which leads 

to a higher statistical significance of the estimates, however they smooth horizontal variations of 

the mean at scales smaller than the bin. Conversely, smaller bins better resolve spatial gradients; 

however, the use of less data points increases the estimation errors. The bin size choice, 
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therefore, influences the estimation of the mean, consequently also affecting the residuals and 

thus second moment statistical properties (Fratantoni, 2001; LaCasce, 2008; Koszalka and 

LaCasce, 2010). 

Furthermore, while most studies based on binning methods employed fixed-sized bins, a 

consequence of this practice is obtaining pseudo-Eulerian estimates whose statistical reliability 

vary in space. To avoid this issue, Koszalka and LaCasce (2010) proposed selecting data in 

clusters covering unequal areas but with a similar number of observations. Notably, the 

application of this technique to GDP data in the Nordic seas resolved features of the time-mean 

circulation with scales ≤10 km in well-sampled regions (Koszalka et al., 2011). However, the 

number of observations per cluster prescribed in that work results in an average selection radius 

of 75 km (∼0.67° latitude and ∼1.3-1.8° longitude, in their study area), meaning that horizontal 

velocity gradients at mesoscale ranges are smoothed out when considering typical ocean 

sampling densities. 

Another source of uncertainty is due to the fact that drifters do not perfectly track the 

horizontal flow. Differences between the measured velocities and the actual current velocities, an 

effect known as slip, are caused by wind drag on the drifter’s surface float and wave-induced 

phenomena, such as Stokes drift and drifter self-propulsion by wave surfing. GDP drifters 

include a drogue centered at 15-meter depth that minimizes the wind and wave-induced bias; 

however, that also introduces another component to the slip via the vertical velocity shear 

between the surface float and the subsurface drogue. Despite the complex nature of the processes 

driving the slip motion, the drogued design of GDP drifters is calibrated to yield a predominantly 

downwind slip of less than ∼0.1% of the 10-m wind speed, for winds up to 10 m/s (Niiler et al., 

1995). An assessment of the GDP dataset by Lumpkin et al. (2013) showed that more than 50% 
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of the available data previously believed to be from drogued drifters are actually from 

instruments that had lost their drogues, a condition that changes the sampling level from 15-m to 

the surface, and renders their trajectories more sensitive to wind and wave effects, increasing the 

slip to about 0.7-1.6% of the 10-m wind speed (e.g. Pazan and Niiler, 2001; Poulain et al., 2009; 

Peng et al., 2015b). 

Nearly-global maps of the mean surface ocean circulation calculated from drifter 

observations using bin-averaging were presented by Niiler (2001) and Maximenko et al. (2009). 

Considering that these fields were biased by undrogued drifter data, and seeking to reduce the 

smoothing effect of data binning, Lumpkin and Johnson (2013) produced a global climatology 

using drogued-only observations and a new binning method that simultaneously models spatial 

and temporal variations. However, since the exclusion of undrogued data significantly reduces 

the observational density in many oceanic areas, Lumpkin and Johnson (2013) selected data 

within relatively large bins (specifically within ellipses oriented by the variance of the binned 

observations, with areas equivalent to 2° radius circles) to obtain statistically significant 

estimates homogeneously distributed throughout the oceans. Although the use of large bins 

better resolves large-scale circulation patterns, it has the potential to significantly smooth 

coherent structures at mesoscale ranges, such as the large cross-stream velocity gradient 

associated with western boundary currents. 

Based on these considerations, this study applies a first-order correction to the slip of 

undrogued drifters by referencing their velocity estimates to 15-m using a formulation proposed 

by Pazan and Niiler (2001), and describes a new estimation method designed to further reduce 

the smoothing effect of data binning, in order to generate a new comprehensive velocity 

climatology at 15-m depth (hereafter referred to as “near-surface”) of the global ocean. The 
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mean fields obtained using the proposed approach recover well-known large-scale circulation 

features, and resolve coherent structures at mesoscale ranges whose visualization was only 

possible by time-averaging surface velocities indirectly inferred from satellite observations (e.g. 

Lagerloef et al., 1999; Maximenko et al., 2009). A thorough description of the circulation in light 

of the new results, including its seasonal variations and kinetic energy distribution, will be the 

subject of an upcoming publication. Here, focus is given to describing the proposed method and 

to analyzing its associated uncertainties. 

This work is organized as follows.  Section 2 describes the datasets, the correction of 

drifter slip bias, and the method proposed for the decomposition of Lagrangian data into mean, 

seasonal and eddy components. Section 3 presents the results of sensitivity tests to method 

parameters and an error analysis, describes the improvements of the new climatological fields 

relative to the results of Lumpkin and Johnson (2013), and briefly describes prominent new 

features observed in the obtained global maps. Finally, Section 4 summarizes this study and its 

conclusions. 

2. Methods 

2.1  Data Description 

2.1.1  Position/velocity observations from surface ocean drifters 

This analysis uses position and horizontal velocity data from both undrogued and 15-m 

drogued drifters of the Global Drifter Program (GDP). This dataset is archived and distributed by 

the Atlantic Oceanographic and Meteorological Laboratory of the National Oceanic and 

Atmospheric Administration (AOML/NOAA, www.aoml.noaa.gov/phod/dac/index.php). Its 

generation involves the quality control of the raw drifter position fixes, and their subsequent 

interpolation via kriging along their trajectories to regular 6 hour intervals, at which the u and v 

http://www.aoml.noaa.gov/phod/dac/index.php)
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velocity components are calculated by 12 hour centered differencing the kriged positions 

(Hansen and Poulain, 1996). The GDP dataset obtained for this study comprises more than 

29 million, six hour position/velocity estimates scattered throughout the world’s ocean, from 

February 1979 to June 2015. About 56% of the available data points are from undrogued drifters. 

Figure 1 shows global distribution maps of the data obtained by drogued, undrogued, and 

both types of drifters (top, middle, and bottom panels, respectively), in observation days per 

square degree. The density of data obtained by drogued drifters is usually higher close to 

continental contours and to traditional deployment sites, such as the western North Atlantic, the 

western and eastern North Pacific, the tropical Pacific, Sea of Japan, and near the Antarctic 

Peninsula, while the distribution of data from undrogued instruments marks time-averaged 

convergence zones in the interior of the subtropical gyres, notably highlighting garbage patches 

in the eastern South Pacific, and within the subtropical gyres of the Atlantic Ocean. These 

characteristics arise because (a) the probability of drogue loss increases as a function of drifter 

age, with about 30% (90%) of these instruments losing their drogues within the first 3 months 

(1.5 years) of operation (Grodsky et al., 2011); (b) a time scale of months to years is required for 

drifters deployed near coastal areas to travel to the interior of the gyres, meaning that instruments 

sampling these regions tend to be older and thus more frequently undrogued; and (c) the drifters 

ultimately tend to move away from time-averaged divergence areas, such as the equatorial 

region, and to accumulate at convergence zones, such as the interior of subtropical gyres. While 

Ekman convergence plays a role in this effect, Beron-Vera et al. (2016) demonstrated that the 

main mechanism driving the accumulation of undrogued drifters at large-scale convergence 

zones is the combined action of wind and currents on finite-sized floating objects.  
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2.1.2  Altimeter-derived geostrophic velocity fields 

Altimeter-derived surface geostrophic velocity (GV) fields are produced by the Segment 

Sol Multimissions d’Altim´etrie, d’Orbitographie et de Localisation Pr´ecise of the Data 

Unification and Altimeter Combination (SSALTO/DUACS), and were obtained from the 

Archiving, Validation and Interpretation of Satellite Ocean Data (AVISO, 

www.aviso.altimetry.fr/duacs/). For its generation, regularly-gridded sea-surface height (SSH) 

fields are initially obtained by merging data from two altimetric satellites with different sampling 

characteristics. One is from the TOPEX/Jason missions, with a 315 km equatorial ground track 

separation and a 9.9156 days global sampling cycle, and the other is from the ERS/Envisat 

missions, with an 85 km equatorial ground track separation and a 35 days sampling cycle. The 

use of simultaneous observations from these  two sampling strategies allows the generation of 

SSH fields with higher spatial- temporal resolution (Chelton et al., 2007), while using data from 

only two satellites at a time ensures a homogeneous spatial-temporal error distribution (Polito 

and Sato, 2015). Geostrophic velocities are then calculated at the extratropics using the 

geostrophic relations, and within a 5◦ band around the equator using a β-plane formulation of the 

geostrophic equations (Lagerloef et al., 1999). The time series of GV maps obtained for this 

study has a 0.25° × 0.25° × 1 day resolution, covering the oceans between 67.5°S and 67.5°N 

from October 1992 until June 2015. 

2.1.3. Reanalysis 10-m wind fields 

The 10 meter height wind velocity fields are from the European Centre for Medium-

Range Weather Forecasts (ECMWF, www.ecmwf.int) ERA-Interim reanalysis model (Dee et al., 

2011). The obtained time-series of maps have a 1° × 1°× 6 hour resolution and spans the entire 

temporal coverage of the GDP dataset. The use of reanalysis winds is based on the assumption 

http://www.aviso.altimetry.fr/duacs/)
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that, as this class of numerical models continually assimilates real geophysical measurements to 

redefine their initial conditions, their results constitute the best available representation of the 

surface wind field in the absence of actual observations. 

2.2  Correction of Drifter Slip Bias 

Due to the significant slip of undrogued drifters, previous studies recommended not using 

their data for calculating pseudo-Eulerian flow statistics without first correcting for slip (e.g. 

Grodsky et al., 2011; Lumpkin and Johnson, 2013). As shown by Figure 1, this significantly 

reduces the observational density in extensive oceanic regions, particularly in the Southern 

Ocean, the South Pacific, and the subtropical gyres of all three major ocean basins. Methods for 

correcting the downwind slip of undrogued drifters are available in the literature (e.g. Pazan and 

Niiler, 2001; Poulain et al., 2009), whose application in the equatorial Atlantic and in the Indian 

Ocean reduced differences between pseudo-Eulerian statistical properties calculated using 

observations from each sampling regime (Perez et al., 2014; Peng et al., 2015a). Based on these 

considerations, this Section extends the correction of the undrogued drifter slip velocities to the 

global ocean, and evaluates the advantages and biases of this practice for calculating the ocean 

velocities’ pseudo-Eulerian mean and variance. 

First, the ECMWF 10-m wind fields are linearly interpolated to the drifter locations. To 

account for the slip motion, a downwind velocity modeled as α × W is subtracted from the drifter 

velocities, where W is the 10-m wind speed, and α is the fraction of W converted to the slip. For 

drogued instruments, αd = 7×10−4 (Niiler et al., 1995). For undrogued drifters, αu is calculated 

using a formulation proposed in Pazan and Niiler (2001), given by 

𝛼𝛼𝑢𝑢 = 〈𝑈𝑈𝑢𝑢〉−〈𝑈𝑈𝑑𝑑〉
〈𝑊𝑊〉 + 𝛼𝛼𝑑𝑑, (1) 
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where the subscripts d and u respectively denote drogued and undrogued drifters, U is the 

downwind component of the drifter velocities, and the brackets represent ensemble averages. 

Specifically, αu is calculated using 6-h drogued and undrogued drifter observations selected 

within 4° × 4° spatial bins centered at the grid points of a 1° × 1° global grid. Only bins with 

more than 300 data points were considered, and where (Uu) ≠ (Ud) and (W) ≠ 0 within 95% 

confidence margins, assuming for simplicity that the observations are independent. Results for αu 

more than three standard deviations away from the mean of the results of all bins were taken as 

outliers, and also excluded. The latter operation was iterated three times to guarantee 

convergence of the αu histogram distribution. 

Figure 2 shows the spatial and histogram distributions of the obtained αu values (left and 

right panel, respectively). The global set of αu retrievals have mean µ = 1.48 × 10−2 and standard 

deviation σ = 0.49 × 10−2, where a Gaussian function fitted to the histogram (red line) indicates 

that this quantity can be approximately described as a normally-distributed random variable. The 

histogram encompasses αu estimates of previous studies, including 0.97 × 10−2 for the Pacific 

and North Atlantic oceans (Pazan and Niiler, 2001), 0.66 × 10−2 in the eastern Mediterranean 

Sea (Poulain et al., 2009), and 1.64 × 10−2 in the equatorial Atlantic and in the Indian Ocean 

(Perez et al., 2014; Peng et al., 2015a). Conversely, the spatial distribution of αu shows 

continuous large-scale patterns that would not be observed in the case of a purely random 

quantity, and that are also qualitatively different from the GDP data spatial distribution 

(Figure 1). One possible explanation for the observed patterns is that they reflect the 

geographical distribution of drifters equipped with surface floats of different aerodynamic 

characteristics, that would thus react differently to direct wind forcing. However, estimates of αu 

as a function of the float surface area (not shown) revealed a weak dependency between these 
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two parameters, suggesting that the distribution in Figure 2 reflects different geophysical 

conditions, and are not merely the result of random chance, heterogeneous data distribution, 

and/or instrument-specific properties. 

It is possible that the geographical dependency of αu seen in Figure 2 reflects the response 

of the drifter velocities to a spatially-varying surface gravity wave field.  This is suggested 

considering the fact that the correction proposed by Equation (1) is based on how the wind 

affects the trajectories of drogued drifters, not accounting for the increased sensitivity of 

undrogued instruments to wave-induced slip motion, which preferentially aligns itself with the 

direction of the swell propagation rather than with the 10-m winds. Testing this hypothesis is 

beyond the objectives of this work, although a possible venue of investigation involves using 

directional wave spectra, retrieved from global ocean wave numerical models and/or from 

satellite-based synthetic aperture radar observations, to estimate the surface Stokes drift 

velocities. 

The downwind slip correction applied here accounts for the spatial variations of αu by 

linearly interpolating the values shown in Figure (2) to the drifter locations. To evaluate this 

approach, drifter data was selected within 1° radius bins centered around the grid points of a 

0.25° × 0.25° global grid, at which the velocity’s mean and variance were separately calculated 

for drogued and undrogued data before and after the slip correction. Figure 3 shows the results 

obtained for the zonal velocity component, in terms of the longitudinal averages of the pseudo-

Eulerian mean (panels a and b) and variance (c, d). Panel (e) highlights the undrogued/drogued 

variance ratio before and after the correction. 

Figure 3a shows that the mean velocities estimated using uncorrected data can differ by 

O[0.1 m/s] due to the increased slip of undrogued drifters. This bias is visible across all latitudes, 
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predominantly reflecting the magnitude and direction of the mean 10-m zonal winds, and is 

particularly intense in the Southern Ocean, where the undrogued drifter mean velocities can be a 

factor of two bigger than those estimated from drogued instruments. Accounting for the 

downwind slip virtually eliminates these differences, leading to time and zonally-averaged 

velocities for drogued and undrogued drifters that are statistically identical within 95% 

confidence margins across most latitudes (Figure 3b). 

For the variances, a visual comparison between Figures 3c and 3d, and between the 

orange and black lines in Figure 3e, shows that the values calculated using observations from 

undrogued drifters surpasses those from drogued instruments at most latitudes both before and 

after the slip correction, although the operation does significantly reduce their differences. In 

terms of global averages, the correction reduces the undrogued/drogued variance ratio from 

1.88 to 1.36.  Section 3.2 demonstrates that the remaining discrepancies can be largely attributed 

to factors unrelated to slip motion, such as the reduced sampling density of drogued drifters, 

methodological errors, and possible sampling biases of drogued and undrogued instruments. 

2.3  Decomposition of Lagrangian Data 

2.3.1  Proposed method 

Following Lumpkin and Johnson (2013), the slip-corrected 6-h drifter velocities are 

preliminarily low-pass filtered along the trajectories using a 5th degree Butterworth filter with a 

cutoff period at 1.5 times the local inertial period or five days, whichever is shorter, to remove 

tidal and near-inertial variability, and then linearly interpolated to daily values, considering the 

fact that 6-h measurements are not independent within the Lagrangian integral time scale, 

estimated to be between 2-3 days. Although a 1-day resolution is still within this range, it 
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reduces the amount of correlated data used in subsequent operations without significantly 

impacting the data coverage in sparsely sampled areas of the ocean. 

Data subsets of the zonal and meridional drifter velocities, u and v, are then selected 

within circular spatial bins centered on the grid points of a 0.25° ×0.25° global grid. The bins 

have a radius equivalent to 1° longitude, meaning that they overlap each other by 0.75° in the 

zonal direction and that their area decreases poleward. The use of overlapping bins on a fixed 

Eulerian grid and the latitudinal dependence of their area seeks to increase the spatial resolution 

of the pseudo-Eulerian maps, and to reflect the poleward reduction of the Rossby deformation 

radius (Lumpkin and Johnson, 2013). 

Within each bin, u and v observations are treated as data series dependent on horizontal 

and temporal coordinates, V (x, y, t), that can be expanded as 

𝑉𝑉(𝑥𝑥, 𝑦𝑦, 𝑡𝑡) = 〈𝑉𝑉〉 +  𝑉𝑉�(𝑥𝑥, 𝑦𝑦) +  𝑉𝑉𝑠𝑠(𝑥𝑥,𝑦𝑦, 𝑡𝑡) + 𝑉𝑉𝑒𝑒(𝑥𝑥,𝑦𝑦, 𝑡𝑡), (2) 

where 〈𝑉𝑉〉 is an ensemble average, 𝑉𝑉� (x, y) describes horizontal variations of the mean structure, 

V s(x, y, t) models seasonal variations, and 𝑉𝑉𝑒𝑒(x, y, t) are residual (eddy) fluctuations. 

To estimate 𝑉𝑉� , previous studies fitted 2-D functions to the binned data (e.g. Bauer et al., 

1998; Johnson, 2001; Lumpkin and Johnson, 2013; Peng et al., 2015a). Although this improves 

the definition of horizontal velocity gradients relative to bin-averaging (e.g. Fratantoni, 2001; 

Jakobsen et al., 2003; Reverdin et al., 2003; Zhurbas et al., 2014), the retrieved pseudo-Eulerian 

mean velocity fields are still visually smooth when compared against mean maps obtained from 

true Eulerian records, such as satellite products and numerical model outputs. To further reduce 

the smoothing, this work uses 1-D functions to model 𝑉𝑉� . 
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The 1-D approach is based on the premise that horizontal variations of the time-mean 

ocean velocity field are highly anisotropic, with larger scales along the mean velocity isolines 

than across them (Huang et al., 2007). Given that the sharpest horizontal gradients of the general 

ocean circulation, those associated with western boundary currents, occur along mesoscale 

ranges, then the mean velocity structure within mesoscale bins can be approximately described 

as a function of the distance across the time-mean velocity isolines. The advantage of 1-D over 

2-D functions lies in the fact that their fitting requires the determination of a smaller number of 

coefficients, making it less prone to estimation errors due to numerical instability, and at the 

same time that allowing the use of more complex functions to model mean horizontal gradients. 

This work uses 1-D polynomials to retrieve 𝑉𝑉� , and a linear combination of harmonics to 

model 𝑉𝑉𝑠𝑠. Substituting these in Equation (2) and assuming a data subset with N observations, 

𝑉𝑉𝑝𝑝(𝑥𝑥�, 𝑡𝑡), p = 1, 2, 3, ..., N , a system with N linear equations can be defined as 

𝑉𝑉𝑝𝑝(𝑥𝑥� , 𝑡𝑡) = ∑ 𝛼𝛼𝑖𝑖(𝑥𝑥�𝑛𝑛
𝑖𝑖=0 )𝑖𝑖 +∑ �𝑏𝑏𝑗𝑗𝑠𝑠𝑠𝑠𝑠𝑠 �

𝜃𝜃𝜃𝜃
𝑗𝑗
�+ 𝑐𝑐𝑗𝑗 �

𝜃𝜃𝜃𝜃
𝑗𝑗
��+ 𝑉𝑉𝑝𝑝𝑒𝑒(𝑥𝑥� , 𝑡𝑡).𝑚𝑚

𝑗𝑗=1  (3) 

The first term on the right-hand side is the nth degree polynomial function used to 

describe spatial gradients, with ai, i = 0, 1, 2, ..., n, as coefficients, where 𝑥𝑥� denotes the 

coordinate system for the 1-D fitting.  The 𝑥𝑥� axis is expressed as the distance in km to the data 

centroid (i.e. the average position of all data points) normalized by the standard deviation of all 

distances, and is found separately for u and v by rotating the binned observations’ coordinates in 

angle increments of 4° about the data centroid. At each angle, the 1-D polynomial is least-

squares fitted to the data sorted along the rotated x-axis and a fitting error is calculated, with the 

axis 𝑥𝑥� being defined at the angle with the smallest error. This procedure is illustrated in Figure 4, 

using v measurements selected within a 0.5° radius bin in the Florida Current. The transition 
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from panel (a) to (b) shows that the variance relative to the fitted function (red line) is minimized 

when the rotated x-axis aligns with the axis of the current. The second term in the right-hand side 

of Equation (3) is the harmonical expansion used to model seasonal fluctuations, where m is the 

number of harmonics; t is the temporal coordinate, in years; θ is the frequency of the annual 

cycle; and bj and cj, j = 1, 2, 3, ..., m, are the coefficients of the sine and cosine components of 

each harmonic. For the generation of the global climatology presented in this work, the 

parameters n and m are set to 4 and 2, respectively, resulting in nine coefficients to be estimated 

in Equation (3). 

The system defined by Equation (3) can be written in matrix form as V = Az +V e, where 

A is a N × 9 matrix containing the polynomial and periodic functions; z is a column vector 

holding their 9 unknown coefficients; and V e is a column vector with N elements containing the 

fitting error, which is a sum of eddy velocities, observational errors, and model errors from 

assuming (3). Following Lumpkin (2003) and Lumpkin and Johnson (2013), a best-fit solution 

for z is obtained via Gauss-Markov estimation (GME) (Wunsch, 1996), an inverse curve fitting 

method that accounts for the fact that Lagrangian observations are correlated within the 

Lagrangian integral time scale, and therefore do not correspond to independent realizations of the 

velocity field. The variance-covariance matrix of the eddy residuals is defined prior to the fitting 

operation (a priori) by assuming an idealized autocovariance function, which corrects the 

number of degrees of freedom for the fitting and thus reduces biases caused by the use of non-

independent data points (Lumpkin, 2003). The GME solution for z is 

𝑧𝑧 = 𝑅𝑅𝑧𝑧𝐴𝐴𝑇𝑇(𝐴𝐴𝑅𝑅𝑧𝑧𝐴𝐴𝑇𝑇 + 𝑅𝑅𝑛𝑛)−1 𝑉𝑉, (4) 
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where Rz and Rn are, respectively, variance-covariance matrices for the system’s coefficients and 

eddy fluctuations, both defined a priori; and the uperscript “T” denotes transposed matrices. Rz is 

a 9 × 9 matrix, whose diagonal terms are assumed to be equal to the squared difference between 

the maximum and minimum binned velocity values (i.e. the square of the data range), while off- 

diagonal terms are set to zero. Rn has N × N dimensions, and is built using the following 

autocovariance function, 

𝑅𝑅𝑛𝑛 = 𝜎𝜎𝑉𝑉2𝑐𝑐𝑐𝑐𝑠𝑠 �
𝜋𝜋𝜃𝜃
2𝑇𝑇𝑑𝑑

� 𝑒𝑒𝑥𝑥𝑒𝑒 �−� 𝜋𝜋𝜃𝜃
2�2𝑇𝑇𝑑𝑑

��, (5) 

where 𝜎𝜎𝑉𝑉2 is the data variance, and Td is a decorrelation time scale, set to 6.33 days, 

corresponding to a Lagrangian integral time scale of 3 days (Lumpkin, 2003; Lumpkin and 

Johnson, 2013). Furthermore, off-diagonal values of Rn are multiplied by 0.9, under the 

assumption that 10% of the eddy variance is due to white noise and thus uncorrelated from one 

observation to the next. Finally, it is assumed that observations of different drifters are always 

independent, meaning that the autocorrelated structure is only calculated along individual 

trajectories. Once the mean structure and the seasonal fluctuations are estimated, they are 

subtracted from the binned velocity observations to obtain the eddy residuals 𝑉𝑉𝑒𝑒. 

Spurious pseudo-Eulerian estimates can arise due to low observational densities. 

Assuming a 3-day Lagrangian integral time scale, a minimum of 60 drifter observation days 

(10 degrees of freedom) is required to estimate the 9 coefficients of Equation (3). To minimize 

sampling-related errors, the coefficients of the periodic functions bj and cj are not estimated in 

bins with 40-90 data points, and no calculations are made in bins with less than 40 data points. 

However, even if such requirements are met, the fitting can be numerically unstable and produce 

spurious results. Thus, solutions for z are considered valid if their ab- solute values are smaller 
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than the data’s velocity range, and if more than 70% of the eddy residuals lies within two 

standard deviations of the data’s ensemble mean. Failing these criteria, the fitting operation is 

tentatively redone using progressively smaller polynomial degrees, to a minimum of one (where 

only the ensemble mean (V) is calculated). If valid estimates are still not obtained, the grid point 

is assigned a no data flag. 

For mapping purposes, the best-fit coefficients of the spatial and seasonal functions are 

evaluated at the center of each bin, i.e. at the grid points of the 0.25° × 0.25° grid. However, due 

to heterogeneous data distribution and the use of overlapping bins, the bin center can lay outside 

of the region covered by the selected data. With that in mind, an elliptical area is defined for each 

bin, with major and minor axes respectively equal to twice the length of the first and second 

eigenvalues of the data (x, y) coordinates, and rotated by the declination angle of the first 

eigenvalue. If the bin center lies outside this ellipse, the grid point is also assigned a no data flag. 

Finally, to assess the statistical reliability of the modeled velocities, an a posteriori error 

variance-covariance matrix Pz is obtained by 

𝑃𝑃𝑧𝑧 = 𝑅𝑅𝑧𝑧 − 𝑅𝑅𝑧𝑧𝐴𝐴𝑇𝑇(𝐴𝐴𝑅𝑅𝑧𝑧𝐴𝐴𝑇𝑇 + 𝑅𝑅𝑛𝑛)−1𝐴𝐴𝑅𝑅𝑧𝑧 , (6) 

where Pz is a 9×9 matrix, and the square root of its diagonal terms are the standard errors of the 

best-fit coefficients ai, bj and cj. It is noted that off-diagonal (covariance) terms in Pz are different 

from zero, meaning that the coefficients have correlated errors. Pz can be used to obtain a 

variance-covariance error matrix Pn for the modeled velocities via error propagation 

𝑃𝑃𝑛𝑛 = 𝐴𝐴𝑃𝑃𝑧𝑧𝐴𝐴𝑇𝑇 . (7) 
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Here, Pn is N × N, and the square root of its diagonal terms correspond to standard errors 

(𝜖𝜖𝑆𝑆𝑆𝑆) for the velocity estimates. In this study, the (𝜖𝜖𝑆𝑆𝑆𝑆) of the mean and seasonal velocity 

estimates are analyzed separately. Specifically, errors for the mean are evaluated at the bin 

center, coinciding with the mapped mean velocities, using only variance-covariance terms in Pz 

associated with the polynomial coefficients in Equation (3), while errors for the seasonal 

fluctuations are evaluated at the spatial-temporal positions of the binned observations using the 

remaining variance-covariance terms in Pz, associated with the coefficients of the periodic 

functions in (3), and cross-terms between coefficients of polynomial and periodic functions. 

2.3.2  Decomposition evaluation 

To evaluate the performance of the decomposition method described in Section 2.3.1, 

altimeter-derived geostrophic velocities (GV) from AVISO are linearly interpolated to the GDP 

drifter locations. The proposed approach assumes that the statistical properties of the AVISO GV 

fields are perfect Eulerian references for estimating the errors of pseudo-Eulerian quantities 

calculated from the Lagrangian GV dataset. 

This analysis is motivated by the fact that the decomposition method requires choices for 

the bin size/mapping resolution, and for the curve fitting parameters n, m, and Td, whose 

definition affects the results. Furthermore, previous studies employed different decomposition 

methods and a wide range of bin sizes and grid resolutions, also using different Lagrangian 

datasets and/or data processing steps, implying that an objective comparison between methods 

should use the same Lagrangian dataset and averaging resolution. Finally, standard errors (𝜖𝜖𝑆𝑆𝑆𝑆) 

obtained from Equation (7) are scaled as (𝜎𝜎2/𝑁𝑁)1/2, where σ2 is the data variance and N is the 

number of independent samples. This means that 𝜖𝜖𝑆𝑆𝑆𝑆 estimates ignore errors introduced by, for 

example, the spatial smoothing effect of data binning, and to possible inadequacies of physical 
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model proposed by Equations (3) and (5), and therefore can differ from the actual estimation 

errors. 

It is noted that the pseudo-Eulerian statistical properties of the Lagrangian GV data differ 

from those of actual drifter observations, due to the following: (1) the GV estimates are subject 

to uncertainties of the geoid and the global tidal models used to reference the altimetric SSH 

measurements, which respectively introduce errors in the velocities’ magnitude and direction, 

and reduce the accuracy of the estimates in regions shallower than 1000 m, due to regional tidal 

effects forced by the local bathymetry and continental contours; (2) ageostrophic flows are 

absent, and the geostrophic approximation may not properly describe the circulation within 

coherent mesoscale eddies, which an increasing body of literature suggests to be predominantly 

in cyclogeostrophic balance (e.g. Castelão and Johns, 2011; Maximenko et al., 2013); and (3) the 

relatively large correlation length scales (O[102 km]) assumed for the generation of regularly-

gridded SSH fields implies that variability at smaller scales are underestimated (e.g. Ducet et al., 

2000; Poje et al., 2014). Despite these limitations, the altimeter-derived geostrophic velocities 

have variance levels comparable to those estimated from in situ data (Ducet and Le Traon, 

2001), implying that statistical quantities calculated from the Lagrangian GV dataset and from 

actual drifter velocity measurements should have similar variability. 

Specifically, the Eulerian time-series of the u and v components of the AVISO 

geostrophic velocities at each grid point, V (t), are decomposed as 

𝑉𝑉(𝑡𝑡) = 𝑉𝑉� + 𝑉𝑉𝑠𝑠(𝑡𝑡) + 𝑉𝑉𝑒𝑒(𝑡𝑡), (8) 
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where 𝑉𝑉�  is the long-term mean; 𝑉𝑉𝑠𝑠 are seasonal fluctuations, estimated by least-squares fitting 

m = 5 harmonics to the residuals about the mean; and Ve are eddy residuals. Variance estimates 

of 𝑉𝑉𝑠𝑠 and 𝑉𝑉𝑒𝑒, respectively 𝜎𝜎𝑠𝑠2 and 𝜎𝜎𝑒𝑒2, are computed conventionally. 

Errors (𝜖𝜖) of pseudo-Eulerian estimates of 𝑉𝑉,�  𝑉𝑉𝑠𝑠, 𝜎𝜎𝑠𝑠2, and 𝜎𝜎𝑒𝑒2, are obtained by subtracting 

the correspondent Eulerian values at each grid point. For simplicity, the 𝜖𝜖 of the u and v 

components are analyzed in terms of its magnitude, 𝜖𝜖𝐴𝐴 = �𝜖𝜖𝑢𝑢2 + 𝜖𝜖𝑣𝑣,
2  hereafter referred to as 

absolute errors.  Due to the time dependence of 𝑉𝑉𝑠𝑠, its 𝜖𝜖𝐴𝐴 at each grid point is defined as the root 

mean square (RMS) magnitude of the errors of the seasonal velocities estimated for the binned 

drifter observations. Standard errors are processed similarly, to allow the comparison between 𝜖𝜖𝐴𝐴 

and 𝜖𝜖𝑆𝑆𝑆𝑆 . 

To investigate the factors governing the horizontal distribution of 𝜖𝜖𝐴𝐴 and 𝜖𝜖𝑆𝑆𝑆𝑆, the u and v 

components of the reference Eulerian parameters are first used to calculate the magnitude of the 

mean velocity (𝑆𝑆̅ = √𝑢𝑢�2 + �̅�𝑣2, hereafter referred to as mean speed), and the kinetic energy of 

seasonal and eddy fluctuations (SKE and EKE, defined as the average of the respective zonal and 

meridional variance estimates). The retrieved 𝜖𝜖𝐴𝐴 and 𝜖𝜖𝑆𝑆𝑆𝑆 are then subsampled within intervals 

(i.e. classes) of the correspondent Eulerian 𝑆𝑆̅, SKE, and EKE, and simultaneously subsampled 

within intervals of the square roots of EKE and N. The error estimates obtained within each class 

are used to calculate RMS values (𝜖𝜖𝐴𝐴𝑅𝑅𝑅𝑅𝑆𝑆 and 𝜖𝜖𝑆𝑆𝑆𝑆𝑅𝑅𝑅𝑅𝑆𝑆),  allowing for an analysis of their variation as 

a function of the considered parameters. 

The choices for the adjustable parameters of the proposed decomposition method were 

defined based on the results of this analysis, which are presented and discussed in Section 3.1. 

Section 3.1.1 evaluates the amount of detail recovered by pseudo-Eulerian mean velocity 
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magnitude maps at different resolutions, while Section 3.1.2 analyzes the sensitivity of the 

results to the fitting parameters. 

Section 3.1.3 shows the impact of the choice of bin size on pseudo-Eulerian estimates, 

and compares the performance of the proposed decomposition method with that of other 

techniques. Finally, Section 3.1.4 assess the spatial distribution of errors, and compares the 

retrieved 𝜖𝜖𝐴𝐴 with 𝜖𝜖𝑆𝑆𝑆𝑆 estimates. 

3.  Results and Discussion 

3.1  Decomposition Evaluation 

3.1.1  Spatial resolution of pseudo-Eulerian fields 

This work maps pseudo-Eulerian estimates to a 0.25° × 0.25° global grid. This resolution 

is adopted because it (a) corresponds to a lower bound limit required to resolve mesoscale 

features, and (b) coincides with the AVISO GV’s native grid, allowing a comparison between 

pseudo-Eulerian and Eulerian statistics. However, an important question is whether the proposed 

decomposition method can recover horizontal velocity gradients at the scales implied by this 

grid. To evaluate the amount of detail recovered by pseudo-Eulerian estimates subsampled at 

different resolutions, Figure 5 shows the Eulerian time-mean geostrophic speed for the Gulf of 

Mexico and Florida Current, alongside pseudo-Eulerian estimates obtained using data selected 

within 1° radius bins, and then mapped to 1° × 1°, 0.5° × 0.5° and 0.25° × 0.25° grids. 

Prominent features shown by the Eulerian field in Figure 5 includes the Loop and Florida 

Currents, with mean speeds of O[0.1 to 1 m/s], and smaller- scale coherent flows with O[0.1 m/s] 

speeds, such as the Antilles Current and recirculation cells on the eastern flanks of the Florida 

and Antilles Currents. The 1° × 1° field only resolves large-scale features, such as the along-

stream structure of Loop and Florida Currents. At 0.5° × 0.5°, the major currents are better 
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defined and O[0.1 m/s] features can be discerned, however the resolution is still insufficient to 

resolve their cross-stream velocity profiles. Further refining to 0.25° × 0.25° results in 

circulation patterns with horizontal scales and speed magnitudes visually compatible with the 

reference Eulerian field, supporting the mapping resolution adopted in this work. Independent of 

the resolution, notable discrepancies relative to the Eulerian field are observed in the western 

portion of the Gulf of Mexico. Such features are attributed to low data densities (<100 data 

points), resulting in sparse realizations of the energetic eddy field. 

3.1.2  Sensitivity to fitting parameters 

The proposed decomposition technique requires a priori specifications for the parameters 

n and m in Equation (3), respectively the polynomial degree and number of seasonal harmonics, 

and of the decorrelation time scale Td in Equation (5). The choice for n affects the overall 

adjustment of the fitted curve to the data. A low n distorts spatial features and/or underestimate 

their magnitudes, also reducing the sensitivity of the procedure illustrated in Figure 4 to obtain 

an angle aligning with the large-scale structure of the data. Conversely, a high n may result in 

overfitting (i.e. the interpretation of eddy fluctuations as spatial structure), and increases the 

chance of estimation errors due to numerical instability. 

For a quantitative evaluation, the left panel of Figure 6 shows the 𝜖𝜖𝑅𝑅𝑅𝑅𝑆𝑆𝐴𝐴  of the pseudo-

Eulerian mean geostrophic speed calculated as a function of the reference Eulerian values, for 

n = 2, 3, 4 and 5 (red, green, black and blue lines, respectively). The shading around each line is 

the 95% confidence margin, and the thin dashed line marks the 1:1 signal-to-noise ratio limit.  

The 𝜖𝜖𝑅𝑅𝑅𝑅𝑆𝑆𝐴𝐴  of all estimates are statistically similar for reference velocity magnitudes between 0 

and 0.9 m/s, gradually rising from ∼0.02 to 0.09 m/s within this interval. Above 0.9 m/s, the 

errors for n = 2 (n = 3) increase faster than for higher n, reaching ∼0.32 (0.27) m/s at Eulerian 
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speeds of 1.4 m/s. Using 4th and 5th degree polynomials, both show similar errors for speeds up to 

1.2 m/s, where it reaches values of ∼0.1 m/s.  Past this limit, the 𝜖𝜖𝐴𝐴𝑅𝑅𝑅𝑅𝑆𝑆 for n = 4 (n = 5) further 

increases to 0.16 (0.13) m/s at reference speeds of 1.4 m/s. Despite the better performance of 

n = 5 at higher velocities, the larger number of coefficients make the estimates more prone to 

stability errors and requires more data.  To balance the definition of velocity gradients with the 

stability of the fitting operation, the climatological fields presented in this work were obtained 

using n = 4. 

Regarding the number of seasonal harmonics, many drifter-based studies used m = 2, 

therefore resolving only annual and semiannual periods (e.g. Richardson and Walsh, 1986; 

Lumpkin, 2003; Lumpkin and Johnson, 2013; Peng et al., 2015b).  Including more harmonics 

can improve the definition of the seasonal cycle, but also increases the chance of errors due to 

overfitting or numerical instability. To verify the sensitivity of the seasonal estimates to the 

choice of m, the right panel in Figure 6 shows the 𝜖𝜖𝐴𝐴𝑅𝑅𝑅𝑅𝑆𝑆 of SKE calculated as a function of the 

correspondent Eulerian values, where the red, green, black and blue lines respectively refers to 

m = 2, 3, 4 and 5. The errors calculated using m = 2 increase from <1 × 10−3 to ∼1.5 × 10−2 

m2/s2 for reference variances between 0 and 3.5 × 10−2m2/s2. Within this range, adding one 

harmonic progressively increases the errors by ∼1 × 10−3 m2/s2 due to overfitting. For Eulerian 

SKE values above 3.5 × 10−2m2/s2, the 𝜖𝜖𝐴𝐴𝑅𝑅𝑅𝑅𝑆𝑆 estimates obtained for all tested m lies within each 

other’s error margins, varying between 1.5−2.5×10−2 m2/s2.  Based on these results, m = 2 is 

considered the optimum choice for the decomposition. 

Finally, Td is the time scale used to define independent data points in the GME method. 

Here, values from to 0 to 20.33 days were tested. Statistically significant changes on the pseudo-

Eulerian results to different Td are not obvious in 𝜖𝜖𝐴𝐴𝑅𝑅𝑅𝑅𝑆𝑆 estimates as the presented in Figure 6.  
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However, a visual inspection of the mean speed maps show that, for Td ≥ 6.33 days, the mean 

speed of features such as the Loop Current, recirculation cells, branches of the Antarctic 

Circumpolar Current, and the eastward extensions of the Kuroshio and Gulf Stream currents, 

increase by O[0.1 m/s] relative to results obtained for Td = 0. The lower speeds in Td = 0 are 

caused by a sampling bias towards smaller speeds intrinsic in data binning, arising from the fact 

that slower drifters tend to spend more time within a limited area than faster ones (Lumpkin, 

2003; Mariano and Ryan, 2007). By defining observations as independent if they are more than 

6 days apart, the relative weight of correlated low speed measurements is reduced in the curve 

fitting, giving higher mean speed estimates for the mentioned features (Lumpkin, 2003). 

However, using Td > 0 also increases the chance of errors due to numerical instability. 

This is attributed to the fact that (a) larger Td’s reduces the number of degrees of freedom; and 

(b) by assuming an autocorrelated structure in time, the relative weight of the observations also 

change in space, which can cause estimation errors if the distribution of independent data points 

is asymmetric along the spatial domain. Specifically assuming Td = 10.33 days (as in Lumpkin 

and Johnson, 2013) and using the Lagrangian GV dataset, these effects caused the exclusion of 

estimates in ∼1800 grid points (∼0.3% of the total), increased tenfold when using actual drifter 

observations due to their larger variances. To minimize such errors, a lower-bound value of Td = 

6.33 days is adopted. 

3.1.3 Sensitivity to bin size and comparison with other techniques 

This section analyzes the sensitivity of pseudo-Eulerian estimates to the choice of bin 

size. Furthermore, since the proposed decomposition method is designed to reduce the smoothing 

effect of binning, its performance is compared against that of other methods, including (a) bin-

averaging (e.g. Fratantoni, 2001; Jakobsen et al., 2003; Reverdin et al., 2003; Zhurbas et al., 
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2014); (b) 2-D polynomial fitting via GME (Lumpkin and Johnson, 2013; Lumpkin and Flament, 

2013; Peng et al., 2015a); (c) least-squares smoothing 2-D cubic splines (LSS) (Bauer et al., 

1998; Falco and Zambianchi, 2011); and (d) a 1-D version of the LSS spline fitting. 

Following Lumpkin and Johnson (2013), a 2nd degree polynomial is used in the 2-D 

GME. In a brief description of the LSS method, this technique requires a priori assumptions of 

the smoothness level of the fitted curve, which allows more stable estimates than the traditional 

least-squares fit (Inoue, 1986). The LSS uses cubic splines, which are functions constituted by a 

set of piece-wise cubic polynomials with continuous first and second derivatives at their 

connection points, known as knots. The LSS fitting parameters include the number of equi-

spaced spline knots (k), and the spline roughness and tension (ρ and τ , respectively). These were 

defined via sensitivity tests, resulting in ρ, τ = 1 for both 1-D and 2-D versions, and k = 3 (k = 2) 

for 1-D (2-D). 

Figure 7 shows pseudo-Eulerian mean geostrophic speed maps for the Loop and Florida 

Currents. The left, middle and right panels are calculated using circular bins with radius 

equivalent to 0.5°, 1° and 1.5° degrees longitude, respectively. From top to bottom, results are 

respectively obtained via bin-averaging, 1-D and 2-D GME polynomial fitting, and 1-D and 2-D 

LSS spline fitting. This region was chosen to illustrate characteristics observed in the global 

fields because it simultaneously includes an intense western boundary current, recirculation cells, 

and coherent circulation structures in the basin interior, features whose cross-stream velocity 

gradients are frequently smoothed in pseudo-Eulerian estimates. 

The bin-averaged fields in Figure 7 demonstrate the smoothing of spatial gradients due to 

the use of progressively larger bin areas. Particularly for 0.5° radius bins, the Loop and Florida 

Currents have cross-stream scales visually compatible with the Eulerian mean field (Figure 5), 
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and maximum core speeds of ∼1 m/s, about 0.4 m/s smaller than the Eulerian values. The 

Antilles Current and recirculation cells can also be observed, with mean speeds of O[0.1 m/s]. 

Increasing the bin size to 1° broadens the cross-stream structure of all currents and attenuates 

their speeds by a factor of 2. Using 1.5° radius bins, only the largest scales of the circulation are 

resolved, where features such as the Antilles Current, recirculation cells, and the cross-stream 

structure of the Loop and Florida Currents, are either absent or significantly smoothed. 

Contrasting with the bin-averaged maps, the fields calculated using curve fitting methods all 

show circulation patterns with spatial scales and speed magnitudes visually closer to the Eulerian 

field. 

Comparing maps in Figure 7 calculated using 1-D and 2-D curve fitting methods, both 

produces visually similar results for 0.5° radius bins. However, increasing the bin radius to 1° 

(1.5°), the Florida Current velocities are more strongly attenuated in the 2-D version, being 

specifically ∼0.4 (0.5) m/s smaller in the LSS, and ∼0.1 (0.2) m/s in the GME. Conversely, the 

fields calculated using 1-D functions have gaps (blank grid points) not observed in their 2-D 

correspondents, that are particularly evident in the maps obtained using 1.5° radius bins at the 

Florida Straits and between the Florida peninsula and the Bahamas. As described in Section 

2.3.1, grid points in the proposed 1-D approach are left blank when the bin center is outside the 

data coverage, criteria that was not adopted when using 2-D functions. 

As for differences between maps obtained via GME and LSS in Figure 7, the GME fields 

show mean Loop Current speeds closer to the Eulerian values for all tested bin radii. 

Specifically, the reference Eulerian map in Figure 5 show speeds between 0.4-0.6 m/s for the 

Loop Current, in contrast with the 0.2-0.4 m/s range obtained via LSS, which is similar to the 

observed in the bin-averaged maps. The GME method also produces larger speeds for the 
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Antilles Current and recirculation cells, surpassing the correspondent LSS values by ∼0.05 m/s.  

As described in Section 3.1.2, data binning preferentially samples slower drifters, introducing the 

observed low speed bias in the bin-averaged and LSS results (Lumpkin, 2003). The GME 

method reduces this effect because it redistributes degrees of freedom based on a prescribed 

decorrelation time scale, which reduces the relative weight of autocorrelated low-speed 

measurements. However, improvement is not observed in the Florida Current, where the 1-D 

LSS actually produces higher speeds than 1-D GME (∼0.1 m/s difference, using 1.5° radius 

bins). This is attributed to the use of more complex functions in LSS (3-knot cubic splines), 

which allow a better description of the intense Florida current’s cross-stream gradients than the 

4th degree polynomials used in the 1-D GME. 

For a quantitative analysis, Figure 8 shows the 𝜖𝜖𝐴𝐴𝑅𝑅𝑅𝑅𝑆𝑆 of the global pseudo-Eulerian 

estimates of the mean geostrophic speed (left panels, a, c and e), and EKE (right, b, d and f), 

calculated as a function of the Eulerian mean speed for both parameters. The dependency of their 

absolute errors to the mean Eulerian speed is assumed because, as data binning attenuates 

horizontal velocity gradients, undiagnosed spatial structure would be interpreted as eddy 

fluctuations, thus introducing errors in the pseudo-Eulerian variances. 

Considering first the results of bin-averaging, panel (a) of Figure 8 shows that, using 0.5° 

radius bins, the 𝜖𝜖𝐴𝐴𝑅𝑅𝑅𝑅𝑆𝑆 of mean speed estimates of all tested decomposition methods increase from 

0.02 to 0.07 m/s for Eulerian speeds between 0 and 0.7 m/s. Past this limit, the errors of the bin-

averaged estimates increase faster than that of other methods, reaching 0.36 m/s at Eulerian 

speeds of 1.4 m/s.  The 𝜖𝜖𝐴𝐴𝑅𝑅𝑅𝑅𝑆𝑆 values of the correspondent EKE estimates (b) increase 

approximately linearly as a function of the Eulerian values, varying from 0.002 to 0.04 m2/s2, 

becoming notably larger than the errors of other methods past 1.2 m/s. Panels (c) to (f) show that 
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the errors of bin-averaged estimates of both quantities increases significantly at larger bin sizes.  

Particularly for 1° (1.5°) radius bins, the 𝜖𝜖𝐴𝐴𝑅𝑅𝑅𝑅𝑆𝑆 of mean speed estimates (c, e) exceeds that of 

other methods at Eulerian speeds of >0.4 (0.2) m/s, reaching maximum values of 0.77 

(1.00) m/s. The larger errors in the mean are reflected in the correspondent EKE estimates (d, f), 

reaching maximum values of 0.11 (0.13) m2/s2 at Eulerian speeds of 1.4 m/s. 

Although less pronounced, an increase of 𝜖𝜖𝐴𝐴𝑅𝑅𝑅𝑅𝑆𝑆 for larger bin sizes is also observed in 

results of curve fitting methods, particularly for the 2-D approach. Analyzing results from the 

1-D and 2-D LSS, panels (a), (c), and (e) of in Figure 8 shows that estimates obtained by the 2-D 

version have consistently larger errors than 1-D for Eulerian speeds >0.6 m/s, for all bin radii. 

Specifically, mean speed obtained by the 2-D LSS show 𝜖𝜖𝐴𝐴𝑅𝑅𝑅𝑅𝑆𝑆 values of 0.26, 0.47 and 0.52 m/s 

(respectively for 0.5°, 1° and 1.5° radius bins) at Eulerian speed of 1.4 m/s, against 0.07, 0.10, 

and 0.13 m/s for the 1-D LSS. Panel (b) shows that the EKE errors for 1-D and 2-D LSS are 

statistically similar to each other for 0.5° radius bins, increasing from 0.002 to 0.035 m2/s2 for up 

to 1.2 m/s reference speeds, and decreasing to 0.002 m2/s2 at 1.4 m/s.  For 1° (1.5°) radius bins 

(d, f), the 𝜖𝜖𝐴𝐴𝑅𝑅𝑅𝑅𝑆𝑆 of EKE estimates of both 1-D and 2-D versions are similar along most of the 

Eulerian speed range, reaching maximum values of ∼0.04 m2/s2 within the 0.8-1.2 m/s range. 

For reference speeds above 1.3 m/s, the 2-D LSS show larger errors than its 1-D version, 

reaching maximum values of ∼0.03 m2/s2 at the 1.4 m/s limit for both 1° and 1.5° radius bins, 

versus ∼ 0.01 m2/s2 for the 1-D LSS. 

Comparing 1-D and 2-D GME methods, Figure 8a shows that, using 0.5° radius bins, the 

𝜖𝜖𝐴𝐴𝑅𝑅𝑅𝑅𝑆𝑆 of the mean speed estimates of both versions are similar within 0.02 m/s, with maximum 

errors of 0.08 and 0.10 m/s, respectively. However, for 1° (1.5°) radius bins (c, e), the errors of 

the 2-D estimates exceed that of 1-D for reference speeds >1 (>0.8) m/s, with maximum values 
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of 0.31 (0.49) m/s for 2-D, and of 0.16 (0.29) m/s for 1-D. As for the 𝜖𝜖𝐴𝐴𝑅𝑅𝑅𝑅𝑆𝑆 of EKE estimates 

(panels b, d and f), the behavior is similar to that described for the LSS, except for the fact that 

the GME’s errors are ∼0.01m2/s2 smaller for reference velocities between 0.5-1.2 m/s, and that, 

for 1.5° bin radius, the GME estimates obtained by both 1-D and 2-D GME surpass their LSS 

correspondents, reaching maximum values of 0.03 and 0.08 m2/s2, respectively. 

Although the smoothing of mean spatial gradients caused by data binning introduces 

errors in the residuals, estimates of the seasonal cycle were not impacted by the increasing bin 

sizes. This is because the functions describing spatial and temporal variations are fitted along 

different dimensions, implying that errors in retrieving the velocity spatial structure should not 

significantly affect estimates of the seasonal velocities. However, estimation errors can occur in 

bins where the sampling is unevenly distributed between the seasons, and/or where seasonal 

variations have spatial scales smaller than the bin size. Binning also smooths horizontal gradients 

of the seasonal and eddy variances, albeit less pronounced than for the mean component since 

both quantities vary over larger scales than the mean velocities. Nevertheless, while this work 

uses curve fitting methods to model only the spatial structure of the mean, a similar approach 

could be adopted to describe horizontal gradients of the squared residuals. 

In summary, the use of curve fitting methods significantly improves the definition of 

spatial gradients relative to bin-averaging, where the proposed 1-D approach is less sensitive to 

smoothing effects than 2-D methods used in previous studies. Regarding differences between 

1-D GME and LSS, the LSS fields show smaller errors for larger bin areas. In contrast, the GME 

fitting reduces biases caused by autocorrelated Lagrangian observations, leading to a better 

representation of features of the time-mean ocean circulation with speeds of O[0.1 m/s], such as 

the Loop Current and recirculation cells, while presenting errors similar to LSS for bin radii 
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equal or smaller than 1°. Based on these results and seeking to maximize the number of estimates 

in sparsely-sampled areas, such as the Southern Ocean and near-equatorial regions, the 

climatological fields presented here are generated using the 1-D GME method and 1° radius bins. 

3.1.4  Error Analysis 

This section analyses the spatial distribution of the absolute errors of pseudo-Eulerian 

estimates (𝜖𝜖𝐴𝐴), and investigates whether the standard errors (𝜖𝜖𝑆𝑆𝑆𝑆) calculated via Equation (7) can 

be used to estimate 𝜖𝜖𝐴𝐴. 

The left panels of Figure 9 show global maps of 𝜖𝜖𝐴𝐴 for the pseudo-Eulerian mean (a) and 

seasonal geostrophic speed (c). Both maps exhibit noisy spatial distributions, suggesting random 

errors. Conversely, large-scale patterns approximately coincident with the global EKE 

distribution can be discerned, with larger values marking more energetic regions. Specifically, 

(a) show errors for the mean speed estimates of 0.02 m/s or smaller for quiescent areas, such as 

the interior of the subtropical gyres, and of ∼0.04-0.09 m/s for energetic regions, as near the 

equator and in the vicinity of strong current systems, such as western boundary currents and their 

seaward extensions, the ACC, the Agulhas Retroflection, and the Brazil-Malvinas Confluence. 

Values above 0.1 m/s are observed in the Indonesian Sea, associated with the low sampling 

densities in the region, and coinciding with the position of intense time-mean currents. The errors 

of the seasonal fluctuations in (c) are visibly larger than the errors in the mean, increasing from a 

base value of ∼0.02 m/s at mid oceanic regions to ∼0.05-0.14 m/s or larger at energetic regions. 

Panels (b) and (d) of Figure 9 show diagrams of 𝜖𝜖𝐴𝐴𝑅𝑅𝑅𝑅𝑆𝑆 calculated as a function of the 

square roots of the number of drifter observation days (N) and of the Eulerian EKE, for the mean 

and seasonal speed estimates, respectively. The diagrams are visually similar, and clearly reveal 
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that the obtained 𝜖𝜖𝐴𝐴𝑅𝑅𝑅𝑅𝑆𝑆 values increase for smaller N1/2 and for larger EKE1/2, characteristic 

compatible with theoretical standard errors, which are scaled as function of the ratio (σ2/N1/2). 

Figure 10 compares absolute and standard errors, showing global maps of the ratio 

𝜖𝜖𝐴𝐴/𝜖𝜖𝑆𝑆𝑆𝑆 (left panels), and diagrams of the ratio 𝜖𝜖𝐴𝐴𝑅𝑅𝑅𝑅𝑆𝑆/𝜖𝜖𝑆𝑆𝑆𝑆𝑅𝑅𝑅𝑅𝑆𝑆 (right) for the pseudo-Eulerian mean 

(top) and seasonal speed (bottom). Analyzing first the mean speed errors, the 𝜖𝜖𝐴𝐴/𝜖𝜖𝑆𝑆𝑆𝑆 values in 

panel (a) have mean 1.61 and standard deviation 0.98. Ratios systematically larger than three 

coincide with the position of intense midlatitude currents, such as the Kuroshio and Gulf Stream 

Currents in the northern hemisphere, and the Agulhas, Brazil and South Indian Ocean Currents in 

the southern, a possible consequence of the smoothing of horizontal gradients due to data 

binning. Conversely, values equal or smaller than one are more frequently observed at near-

equatorial regions.  The 𝜖𝜖𝐴𝐴𝑅𝑅𝑅𝑅𝑆𝑆/𝜖𝜖𝑆𝑆𝑆𝑆𝑅𝑅𝑅𝑅𝑆𝑆 values in (b) reveal a more robust relationship between both 

error metrics, with mean 1.83 and standard deviation 0.48. Near-one ratios are more frequently 

associated with N1/2 between 9.5 and 15 (90-225 drifter days), explaining the prevalence of such 

values near the equator, a relatively poorly-sampled region (Figure 1). The discontinuity at N1/2 = 

9.5 is associated with the sampling requirement defined for estimating seasonal fluctuations, 

whose inclusion in the analysis increases 𝜖𝜖𝑆𝑆𝑆𝑆, since more parameters are estimated during the 

fitting operation. 

Considering the errors of the seasonal speed estimates in Figure 10, the 𝜖𝜖𝐴𝐴/𝜖𝜖𝑆𝑆𝑆𝑆 values in 

(c) have mean 1.72 and standard deviation 0.49. Coherent spatial features with ratios larger than 

2.5 are observed near southeast Asia, along the western coasts of North and South America, the 

southwestern coast of Africa, and at the center of the North Atlantic subtropical gyre. While the 

discrepancies near southeast Asia and in the southern hemisphere could hypothetically be 

attributed to seasonal sampling biases, in the northern hemisphere the observed patterns coincide 
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with some of the most densely sampled regions of the world’s oceans. The large ratios in these 

areas are attributed to the high observational density itself, which acts to reduce the statistical 

errors due to the increase of the available number of degrees of freedom, combined with the 

locally low SKE values. The 𝜖𝜖𝐴𝐴𝑅𝑅𝑅𝑅𝑆𝑆/𝜖𝜖𝑆𝑆𝑆𝑆𝑅𝑅𝑅𝑅𝑆𝑆diagram (d) shows surprisingly small variations as a 

function of EKE1/2 and N1/2, with mean 1.83 and standard deviation 0.27. The diagram also 

demonstrates a gradual increase of the ratios as a function of the sampling density for N1/2 >35 

and EKE1/2 < 0.2 m/s, reflecting the enhanced 𝜖𝜖𝐴𝐴/𝜖𝜖𝑆𝑆𝑆𝑆 values at the center of the subtropical 

gyres observed in (c). 

If the 𝜖𝜖𝐴𝐴 values in Figure 9 were purely random and normally-distributed around the 

reference Eulerian estimates, then about 68.4, 95.6 and 99.8% of the obtained values would 

respectively lie within 1, 2 and 3 standard error margins. However, the ratios between 𝜖𝜖𝐴𝐴 and 𝜖𝜖𝑆𝑆𝑆𝑆 

calculated globally (Figure 10) reveals significantly smaller percentual values (Table 1). 

Fractions similar to theoretical expectations are only obtained when twice as large standard 

errors are assumed, in agreement with the mean 𝜖𝜖𝐴𝐴𝑅𝑅𝑅𝑅𝑆𝑆/𝜖𝜖𝑆𝑆𝑆𝑆𝑅𝑅𝑅𝑅𝑆𝑆 ratio of 1.83 obtained for both the 

mean and seasonal speed estimates. This result suggests that the 𝜖𝜖𝑆𝑆𝑆𝑆 values calculated via 

Equation 7 are underestimated by about a factor of 2. This conclusion is valid for the set of 

optimum parameters used for calculating pseudo-Eulerian quantities in this study, and it can vary 

if different choices are adopted. 

For completeness, Figure 11 shows the global maps of 𝜖𝜖𝐴𝐴 (left panels), and of EKE1/2 vs. 

N1/2 diagrams of 𝜖𝜖𝐴𝐴𝑅𝑅𝑅𝑅𝑆𝑆 (right) for pseudo-Eulerian estimates of SKE (top) and EKE (bottom). The 

spatial distribution of 𝜖𝜖𝐴𝐴 in both maps coincide with the spatial patterns of the corresponding 

parameters, with errors < 2.5 × 10−3 m2/s2 dominating the interior of the basins, increasing to 

between 1.5−4.0 × 10−2m2/s2 in energetic regions. The 𝜖𝜖𝐴𝐴𝑅𝑅𝑅𝑅𝑆𝑆 diagrams reveal that the errors of 
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both SKE and EKE (b and d, respectively) vary as a function of EKE1/2 and N1/2, although the 

errors of EKE estimates display a smaller dependency on N1/2 for reference EKE1/2 values larger 

than ∼0.2 m/s. 

3.2. Analysis of the Variance Bias of Undrogued Drifter Velocity Data 

As described in Section 2.2, the pseudo-Eulerian variances calculated using slip-corrected 

velocity data from undrogued drifters surpasses those estimated for drogued instruments by, on 

average, 36%. This positive bias can stem from factors such as (a) undiagnosed slip, since the 

simple downwind slip model αu × W does not account for wave-induced drifter motion; and (b) 

the fact that undrogued drifters sample at the surface, implying that their velocity data should 

include a stronger response to surface-intensified ocean processes, such as Langmuir cells and 

Ekman currents (Zhurbas et al., 2014). However, maps of the difference between the variances 

calculated from data of drogued-only and both drogued and undrogued drifters shows spatial 

patterns and magnitudes similar to the observed in Figure 11, suggesting that the observed 

discrepancies may be due to factors unrelated to the water-tracking characteristics of undrogued 

drifters. 

To test this hypothesis, Figure 12 shows the horizontal and histogram distributions of 

differences between SKE and EKE estimates calculated using observations from drogued 

drifters, and using data from both drogued and undrogued drifters. Specifically, panels (a), (b), 

(e), and (f) are obtained using slip-corrected drifter velocities, while (c), (d), (g) and (h) are from 

geostrophic velocities interpolated to the drifter locations. Figure 12 reveals spatial patterns of 

the SKE and EKE differences visually similar for both Lagrangian datasets. Interestingly, the 

EKE difference maps (panels e, g) show negative (positive) values at the cyclonic (anticyclonic) 

regions of the seaward extensions of the Kuroshio, Agulhas, and Gulf Stream currents, which 
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can reflect a preferential sampling of cyclonic (anticyclonic) eddies by drogued (undrogued) 

drifters (c.f. Lumpkin, 2016). Histogram distributions of the global SKE (EKE) differences are 

non-Gaussian, being skewed to positive (negative) values and showing long tails. The SKE 

difference histograms obtained for both Lagrangian datasets are strikingly similar to each other 

(b, d). Regarding the EKE differences, the histogram for slip-corrected drifter data is flatter and 

more skewed than that of the AVISO velocities, although it is notably closer to it than the 

distribution obtained for uncorrected drifter observations (f, h). 

Table 1:  Summary of absolute and standard errors (𝜖𝜖𝐴𝐴 and 𝜖𝜖𝑆𝑆𝑆𝑆, respectively) for pseudo-Eulerian mean and 

seasonal geostrophic velocity estimates, and of the 𝜖𝜖𝐴𝐴 values of the seasonal and eddy variances.  Here, �〈𝜖𝜖𝐴𝐴2〉 and 

�〈𝜖𝜖𝑃𝑃2〉 denote the global root mean square value of each error metric. The percentages are fractions of the global set 

of 𝜖𝜖𝐴𝐴 values that are smaller than ne = 1, 2 and 3 times the corresponding 𝜖𝜖𝑆𝑆𝑆𝑆 estimates, and twice as large 𝜖𝜖𝑆𝑆𝑆𝑆 

values. 

 
 
 

 
 
 
 
 
 

 

 

 

 

  

 �〈𝜖𝜖𝐴𝐴2〉 �〈𝜖𝜖𝑆𝑆𝑆𝑆2 〉 
𝜖𝜖𝐴𝐴 < (ne × eSE) 𝜖𝜖𝐴𝐴 < [ne × (2 × eSE)] 

ne = 1 ne = 2 ne = 3 ne = 1 ne = 2 ne = 3 

𝑢𝑢� 4.11 cm/s 2.95 cm/s 41.3% 70.6% 87.3% 70.6% 95.1% 99.3% 

𝑣𝑣 3.64 cm/s 3.13 cm/s 45.6% 76.4% 91.5% 76.4% 97.2% 99.6% 
�𝑢𝑢�2 +  𝑣𝑣2 5.49 cm/s 4.30 cm/s 29.3% 71.3% 91.6% 71.3% 97.7% 99.7% 

𝑢𝑢𝑠𝑠 4.61 cm/s 2.65 cm/s 10.4% 71.5% 94.5% 71.5% 97.4% 98.0% 
𝑣𝑣𝑠𝑠 4.10 cm/s 2.45 cm/s 13.3% 76.5% 95.6% 76.5% 97.5% 98.0% 

�𝑢𝑢𝑠𝑠2 + 𝑣𝑣𝑠𝑠2 6.17 cm/s 3.61 cm/s 5.5% 75.3% 96.0% 75.3% 97.6% 98.0% 
〈𝑢𝑢𝑠𝑠2〉 62.32 cm2/s2  

〈𝑣𝑣𝑠𝑠2〉 56.99 cm2/s2 

½ +(〈𝑢𝑢𝑠𝑠2〉 + 〈𝑣𝑣𝑠𝑠2〉) 47.52 cm2/s2 
〈𝑢𝑢𝑒𝑒2〉 106.36 cm2/s2 
〈𝑣𝑣𝑒𝑒2〉 110.35 cm2/s2 

½ +(〈𝑢𝑢𝑒𝑒2〉+ 〈𝑣𝑣𝑒𝑒2〉) 93.30 cm2/s2 
 

̅

̅
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The Lagrangian geostrophic velocity dataset is, obviously, not affected by slip biases and 

by the different sampling depths of drogued and undrogued drifters, meaning that the SKE and 

EKE differences in panels (c), (d), (g), and (h) of Figure 12 should reflect effects such as biased 

sampling, estimation errors conditioned by the smaller sampling density of drogued drifters, and 

errors of the decomposition method. An estimate of the fraction of the variance of the errors in 

the drifter-based KE estimates, introduced by factors unrelated to the sampling characteristics of 

undrogued drifters, can be attempted by taking the ratio between the sum of the squares of the 

SKE (EKE) differences calculated using the Lagrangian geostrophic velocities and the actual 

drifter measurements, which results in a value of 0.62 (0.57). 

3.3. New Climatological Fields 

Figure 13 shows mean speed maps for the Gulf of Mexico and the western North Atlantic 

(panels a and b) and for the Nordic Seas (c, d), calculated using drifter observations. Panels (a, c) 

are the climatology of Lumpkin and Johnson (2013) (version 2.08, generated using GDP drifter 

observations from February 1979 to March 2016), which fitted 2-D, 2nd degree polynomials via 

GME to drogued drifter observations selected within elliptical bins, with constant areas of π(2°)2, 

oriented by the declination of the variance ellipse of the eddy fluctuations, and centered at the 

grid points of a 0.5° × 0.5° global grid. Panels (b,d) are obtained using the method described in 

Section 2.3.1. 

Considering the western North Atlantic and Gulf of Mexico (Figure 13a, b), the map 

obtained using the proposed method (b) resolves mean core speeds for the Florida Current and 

Gulf Stream above 1 m/s between 25–37°N, with a maximum speed of 1.57 m/s between the 

Florida peninsula and the Bahamas, values up to 50% larger than in (a). Furthermore, (b) shows 

∼0.1 m/s faster Antilles Current and recirculation cells in the eastern flanks of the Antilles and 
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Florida/Gulf Stream Currents, and horizontal scales for all major features closer to those 

observed in the time-mean Eulerian geostrophic speed map in Figure 5. The field in (b) also 

includes coherent circulation patterns not observed in (a), particularly around the Caribbean 

islands and in the northern flank of the Gulf Stream after the current separates from the coast, 

north of 36°N. 

In the Nordic Seas (Figure 13c, d), prominent features includes the Norwegian Current, 

flowing primarily north/northeast along the coast of the Scandinavian peninsula; the clockwise 

circulation around Greenland, composed of the East and West Greenland Currents; and the 

southward-flowing Labrador Current, observed at the left edge of the maps. The proposed 

method (d) produces speeds 0.1–0.2 m/s larger than the climatological field in (c) for all major 

circulation components, resulting in maximum values of 0.5–0.6 m/s for the East/West 

Greenland and Labrador Currents, and of 0.35–0.45 m/s for the Norwegian Current. Also, the 

cross-stream structure of the main features are better defined in (d) and mesoscale details are 

recovered, such as the currents around Iceland, and an anticyclonic eddy with ∼200 km diameter 

centered at approximately 70°N, 4°W, also resolved in Koszalka et al. (2011) by ensemble-

averaging GDP drifter observations grouped within clusters (Koszalka and LaCasce, 2010). 

The improvements relative to the results of Lumpkin and Johnson (2013) shown in 

Figure 13, are due to (1) the use of smaller bins, which reduces errors for mean velocity 

estimates caused by the smoothing of the mean horizontal gradients (panel (a) shows horizontal 

scales and speed magnitudes visually similar to the observed in the pseudo-Eulerian mean 

geostrophic speed map calculated using the 2-D GME method and 1.5° radii circular bins, 

presented in Figure 7); (2) the use of the proposed 1-D curve fitting and of higher-degree 

polynomials, which reduces the sensitivity of the results to changes in bin size, leading to a better 
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representation of cross-stream velocity gradients; and (3) the inclusion of slip-corrected velocity 

data from undrogued drifters, which significantly increases the number of observations available 

for the analysis, particularly in mid-oceanic regions. At basin scales, these factors combined 

allow resolving mesoscale features of the general circulation. This is illustrated by Figure 14, 

which has global pseudo-Eulerian maps obtained from drifter velocity observations and using the 

proposed decomposition method. 

Figure 14 clearly resolves the major currents composing the gyre and tropical circulation 

systems. Well-known features, such as the strong equatorial divergence in the Pacific and 

Atlantic oceans and the convergence in the interior of the subtropical gyres, can be observed in 

both the meridional velocities (b) and the streamlines (c) (Maximenko et al., 2009, 2012; 

Lumpkin and Johnson, 2013). Unlike in previous studies, the streamlines are calculated using 

unsmoothed pseudo-Eulerian mean velocities, indicating the spatial consistency of the results 

even in regions where the speeds are low (<0.05 m/s). Figure 14 provides a clearer picture of the 

Antarctic Circumpolar Current (ACC) than in Lumpkin and Johnson (2013), particularly in the 

Indian and Pacific sectors, due to the inclusion of undrogued drifter data in the analysis (Figure 

1). Prominent features of the ACC absent in the previous climatology includes the southern 

branch of the ACC in the Indian Ocean between 10-80°E, which leads to a narrow “S”-shaped jet 

crossing the Kerguelen Plateau (55°S, 80°E), downstream of which the ACC merges with the 

South Indian Ocean Current. In the Pacific sector, two parallel jets are observed between 160-

120°W, delineating fracture zones of the Antarctic-Pacific ridge. These jets display mean core 

speeds of up to 0.8 m/s, the largest estimated in the Southern Ocean. 

The zonal velocities in Figure 14a reveal zonally-elongated jet-like features embedded in 

the large-scale circulation, such as the striation pattern in the South Pacific between 20-50°S, 
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which occupies most of the basin’s zonal domain. The existence of such features in the ocean 

was first inferred in the numerical investigation of Treguier et al. (2003). Galperin et al. (2004), 

based on the results of high-resolution ocean simulations and on similarities of the wavenumber 

power spectra of oceanic motions to those estimated for the atmospheres of giant planets, argued 

that banded features should be ubiquitous in the ocean, as a consequence of the tendency of two-

dimensional geophysical turbulence to form zonal jets.  Observational evidence of their existence 

in the ocean was first reported by Maximenko et al. (2005) in high-passed altimeter-derived 

geostrophic velocity fields. Later, Maximenko et al. (2009) used a high-resolution mean dynamic 

topography model to improve geostrophic velocity estimates from altimeters, obtaining a time-

mean map that suggested the existence of quasi-stationary striations in many oceanic regions. 

Although previous studies also reported the existence of such features in drifter-based mean 

maps (e.g. Maximenko et al., 2008, 2009), the obtained climatological fields now allow their 

visualization with a level of detail comparable with that of satellite products. 

In the North Atlantic, the eastward flow of the Azores Current can be observed centered 

at 34°N (Figure 14a), showing a predominantly zonal flow from approximately 60-6°W. Narrow 

bands of negative zonal velocities are seen flanking the Azores Current, where the westward 

flow in its northern flank forms a continuous band of negative velocities with the Gulf Stream’s 

recirculation, seen in the southern limb of the Gulf Stream between 80-40°W. West of 50°W, the 

striation is characterized as elongated bands of alternating positive/negative velocities between 

70-50°W. This striation connects with the Azores current in the east, and to a narrow band of 

positive velocities in the northern flank of the Antilles current in the west, forming a continuous 

pattern of positive zonal velocities from ∼76-6°W, virtually crossing the North Atlantic basin.  

Similarly in the North Pacific, the eastward flow of the Hawaiian Lee Countercurrent (HLCC) is 
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seen centered at ∼19°N, extending from 156°W until approximately the dateline (Lumpkin and 

Flament, 2013). However, another well-resolved band of eastward velocities is observed further 

west at the same latitude be- tween 130-160°E, which can correspond to a westward extension of 

the HLCC. A narrow band of negative zonal velocities is observed in the northern flank of the 

HLCC, which is alternated by another band with positive values. Although not well resolved, a 

visual inspection suggests that the striation pattern continues further north, potentially connecting 

with the recirculation of the Kuroshio Current’s seaward extension. Alternating zonal jets are 

also prominently observed off the west coast of North America between 22-45°N, extending up 

to 20° longitude towards the basin’s interior. These features were described by Centurioni et al. 

(2008), and are associated with permanent meanders of the California Current. A similar pattern 

is observed along the west coast of South America from 10-35°S. Maximenko et al. (2009) 

reported striations also off of the west coast of southern Africa, however the low observational 

density in the region results in a poor definition of the local circulation. 

Other notable zonally-elongated features in Figure 14a, not well resolved in previous 

drifter-based estimates, includes the eastward velocities off the east coast of South America 

between 15-30°S, extending ∼20° longitude seaward within the large-scale, westward flow of 

the southern branch of the South Equatorial Current (Stramma and Schott, 1999), and possibly 

associated with re- circulation cells of the Brazil Current. Further south, the Zapiola Anticyclone 

can be observed at 45°S, 42°W (de Miranda et al., 1999; Volkov and Fu, 2008). In the southern 

Indian Ocean, the eastward flow of the South Indian Ocean Countercurrent (SICC) is seen 

centered between 24-28°S (Siedler et al., 2006; Schott et al., 2009), originating from a 

recirculation of the Southeast Madagascar Current at ∼40°E and observed as a jet until 100°E. 

The vectors in panel (c) suggests that the SICC merges with the southward flow of the Leeuwin 
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Current (LC) offshore of western Australia at 30°S, 115°E; however the local circulation is not 

well resolved and the observed branching reflects relatively low observational densities 

combined with realizations of the eddy field. Finally, Figure 14 clearly shows the counter-

clockwise flow of the LC along the western and southern coasts of Australia (Feng et al., 2009). 

South of Australia, panel (a) also shows a narrow band of negative zonal velocities in the 

southern limb of the LC, associated with the Flinders Current (Middleton and Cirano, 2002; 

Middleton and Bye, 2007). 

4.  Summary and Conclusions 

To obtain an improved, global near-surface velocity climatology from GDP drifter 

observations, this work updates the methods described in Lumpkin and Johnson (2013) by (a) 

correcting the downwind slip bias of undrogued drifters using a formulation proposed by Pazan 

and Niiler (2001), an operation that recovers about half of the GDP dataset; and (b) introducing a 

new method for decomposing drifter data into mean, seasonal and eddy components, designed to 

minimize the spatial smoothing and smearing effects of other data binning methods. The 

proposed procedure accounts for spatial variations of the mean within spatial bins by fitting a 

1-D, 4th degree polynomial to the binned ob- servations, sorted along a coordinate axis defined at 

the rotation angle that minimizes the fitting error (Figure 4). 

The correction of the drifter slip bias is done by subtracting a downwind 935 motion from 

the drifter velocities equal to a fraction α of the ECMWF ERA- Interim 10-m winds. For 15-m 

drogued drifters, αd = 7 × 10−4 (Niiler et al., 1995).  For undrogued drifters, αu is calculated via 

Equation (1) using data selected within 4° × 4° bins centered at the grid points of a 1° × 1° 

global grid.  Although the obtained αu values are normally-distributed in probability space, 

suggesting random fluctuations around the mean, its spatial distribution shows large-scale 
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patterns that are indicative of a geophysical forcing mechanism (Figure 2). Since (1) does not 

take into account the fact that undrogued drifters are more sensitive to wave effects, one 

possibility is that the observed spatial patterns reflect the response of undrogued drifters to a 

spatially-varying surface gravity wave field. 

The correction of the slip motion of undrogued drifters takes into account the spatial 

variations of αu by linearly interpolating the obtained values to the drifter locations, producing 

zonally-averaged, pseudo-Eulerian mean estimates for both drogued and undrogued drifters that 

are statistically similar across most latitudes (Figure 3). This also reduces the globally-averaged 

drogued/undrogued variance ratio from 1.81 to 1.36, where most of the remaining differences 

can be attributed to factors unrelated to the slip bias of undrogued drifters, such  as method 

errors, the smaller sampling density of drogued drifters, and biased sampling (Figure 12). 

However, it is noted that the linear downwind slip correction for drogued instruments 

was not validated for wind speeds >10 m/s nor in high wave amplitudes (Niiler et al., 1995), 

meaning that the slip for both drogued and undrogued drifters can be underestimated in regions 

with strong winds and/or high wave energy, such as the Southern Ocean.  Furthermore, the 

correction of the slip of undrogued drifters proposed by Equation (1) operates by removing part 

of the difference between the along-wind current velocity at 0-m and at 15-m that is correlated 

with wind speed, which includes not only the wave and wind-induced slip, but also the signature 

of wind-driven currents such as Ekman flows. Due to the vertical shear of Ekman velocities 

between the surface and 15-m (c.f. Rio et al., 2014), an undiagnosed cross-wind velocity 

component associated with the Ekman dynamics can be present in the slip-corrected undrogued 

drifter velocities, and thus contribute to the differences between the pseudo-Eulerian variances 

calculated using drogued and undrogued drifter data. Lastly, the αu estimates have uncertainties 
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of their own, whose origins and magnitude were not accessed, implying that biases due to the use 

of observations from undrogued drifters can still be significant. Nevertheless, the improvements 

obtained by the simple correction used in this study are encouraging.  If the spatial patterns of αu 

truly reflect wave effects, then a more accurate correction can possibly be achieved by first 

removing the instantaneous Stokes drift from the drifter measurements, estimated from 

numerical models or satellite/mooring/drifter observations, before calculating the downwind slip 

coefficient via (1). 

The method proposed for the decomposition of Lagrangian data requires definitions for 

parameters whose adjustment affects the results, including (a) the bin size and mapping 

resolution; (b) the model used to describe spatial and temporal variations, particularly the 

polynomial degree n and number of seasonal harmonics m (Eq. 3); and (c) the decorrelation time 

scale Td (Eq. 5). Those were defined via sensitivity tests using altimeter-derived geostrophic 

velocity (GV) data from AVISO subsampled at the drifter locations. Specifically, pseudo-

Eulerian quantities were calculated from the Lagrangian GV dataset for ranges of the adjustable 

parameters and compared against the corresponding Eulerian values. This operation resulted in 

optimum values of n = 4, m = 2, and Td = 6.33 days, and showed that coherent mesoscale 

features can be resolved by mapping estimates onto a 0.25° × 0.25° grid. 

Regarding bin size, the proposed 1-D approach better resolves the cross-stream velocity 

structure of narrow currents than other methods, from the O[1 m/s] flow of western boundary 

currents, to O[0.1 m/s] features such as recirculation cells (Figure 7), and is less sensitive to 

variations of this parameter (Figure 8). The new global climatological fields are generated using 

1° radii circular bins, to balance the smoothing effect of binning with the statistical reliability of 

the estimates in poorly-sampled regions. Figure 8 shows that this procedure produces mean core 
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speeds for western boundary currents up to 0.2 m/s faster than the decomposition method of 

Lumpkin and Johnson (2013), 0.4 m/s faster than using 2-D smooth splines (e.g. Bauer et al., 

1998; Falco and Zambianchi, 2011), and 0.75 m/s faster than bin-averaging (e.g. Fratantoni,  

2001; Jakobsen et al., 2003; Maximenko et al., 2009). 

Standard errors, calculated for the modeled velocities via (7), were compared against the 

root mean square (RMS) differences between pseudo-Eulerian and Eulerian estimates (absolute 

errors). Using optimum method parameters, standard errors are found to underestimate absolute 

errors by about a factor of 2. Differences between both error metrics arise because standard 

errors do not account for Eulerian binning biases, such as the smoothing of time-mean spatial 

gradients, and due to possible inadequacies of the model proposed by (3) and (5).  The relatively 

small standard errors can also reflect an underestimation of the decorrelation time scale Td, 

which was fixed at all bins assuming a Lagrangian integral time scale of 3 days, when this 

parameter can actually range from less than one day to O[1 week]. 

The pseudo-Eulerian mean fields obtained using the presented methods and real drifter 

observations (Figure 13) resolves details of the general ocean circulation absent in the 

climatology described by Lumpkin and Johnson (2013). Core speeds for the Florida/Gulf Stream 

Currents are up to 50% larger, and recirculation cells and other relatively narrow circulation 

features are stronger and better-defined. Notably, the global fields also show zonally-elongated 

striation features in all major oceanic basins (Figure 14), which previously could only be 

resolved at such spatial resolution by time-averaging surface velocities inferred from satellite 

observations (e.g. Maximenko et al., 2009). 

These results support the consistency of the obtained mean fields. Since the reliability of 

the results can be assessed using the standard errors calculated from Equation (7), this new 
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climatology can be used to validate satellite-derived surface velocity products and the output of 

realistic numerical simulations. From a methodological standpoint, Peng et al. (2015b) 

demonstrated that accounting for horizontal velocity gradients improves the convergence of eddy 

diffusivity estimates, implying that further improvements can possibly be achieved by using the 

updated decomposition method presented in this study. The better performance of the proposed 

decomposition method in resolving spatial gradients can also improve estimates of Reynolds 

stresses, and of the turbulent transport of heat, salt, and tracers across large-scale oceanic fronts. 

Furthermore, the presented method is general and can be applied to other Lagrangian datasets, 

such as velocity observations from subsurface floats (e.g. SOFAR and RAFOS), and temperature 

and salinity data from Argo profilers. Considering that their historical observational density is 

smaller than that of surface drifters, the better performance of the proposed 1-D approach at 

larger bin sizes (Figure 8) can improve the definition of spatial structures for in situ-based 

climatologies of the subsurface ocean. 

Finally, Lumpkin and Johnson (2013) observed that interannual variability correlated 

with the Southern Oscillation Index (SOI) explained a significant fraction of the near-surface 

velocity’s variance in the tropical Pacific and tropical Indian Oceans. Following that study, the 

methods described here can be extended to account for forms of interannual variability by 

including a long-term trend and/or climate indexes as extra functions in the matrix A used in the 

GME estimation (Eq. 4). By itself, adding an extra function increases the sampling requirement 

by one degree of freedom (6 drifter days, assuming a 3-day Lagrangian integral time scale), also 

increasing the standard errors calculated via Equations (6) and (7) due to the larger number of 

estimated parameters. If the extra function is a climate index such as the SOI, then its successful 

regression would require the sampling of multiple positive/negative phases of the index, 
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implying that the actual sampling requirements can be significantly larger. For example, 

Lumpkin and Johnson (2013) estimated the SOI’s amplitude in bins with more than 365 drifter 

days, and other constraints can possibly be further adopted to restrict the estimation to bins 

where the drifter data is more homogeneously distributed across the years. The expected increase 

in sampling density promoted by the continued maintenance of the GDP drifter array in the 

coming years, besides refining the obtained time-mean and seasonal climatological fields, can 

potentially lead to a better resolution of interannual current variability correlated not only with 

the SOI, but also with the indexes of other low-frequency climate phenomena, such as the Indian 

Ocean Dipole and the Atlantic Multidecadal Oscillation. 
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Figure 1: Number of drifter observation days per square degree for the period between February 
1979 and June 2015, considering data obtained from drogued, undrogued, and both sampling 
regimes (top, middle and bottom panel, respectively).  
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Figure 2: Downwind slip coefficient for undrogued GDP drifters αu calculated via Equation (1), 
using velocity observations from drogued and undrogued GDP drifters and 10-m wind data from the 
ECMWF ERA-Interim reanalysis selected within 4° × 4° bins, centered on the grid points of a 1° × 
1° global grid. Left: global map of the retrieved αu values. Right: histogram of this parameter, 
where the red line is a Gaussian function fitted to the αu distribution.  
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Figure 3: Longitudinal average of the pseudo-Eulerian mean (panels a and b) and variance (c 
and d) for the zonal ocean velocities, estimated from drifter observations. The blue, red, and gray 
lines are calculated using data from drogued, undrogued and both drifter types, respectively; 
shading around each line denotes 95% confidence intervals. The left panels (a, c) are obtained 
without accounting for drifter slip bias, while the right (b, d) are based on drifter velocities 
corrected for downwind slip, following the methods described in the text. Panel (e) shows the 
zonally-averaged undrogued/drogued variance ratio before and after correction (orange and black 
line, respectively).  
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Figure 4:  Schematic representation of the 1-D curve fitting to drifter velocity data organized 
along the rotated x-axis. The dots are meridional velocity measurements selected within 0.5° of 
the coordinates 28°N, 79.75°W, region dominated by the northward flow of the Florida Current.  
The arrows labeled x, y show the orientation of the original Cartesian coordinate system, while 
x′, y′ are the rotated axes. In both diagrams, data is projected to the plane (x′, v), along which the 
1-D function is fitted (red lines). The transition from panel (a) to (b) shows that the data variance 
relative to the fitted function is minimized when x′ is aligned with the current’s mean velocity 
structure.  
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Figure 5: Long-term average of the AVISO geostrophic speed for the Gulf of Mexico and 
Florida Current. The reference Eulerian field is illustrated alongside pseudo-Eulerian estimates, 
mapped to 1.00° × 1.00°, 0.50° × 0.50°, and 0.25° × 0.25° grids via the 1-D GME method.  
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Figure 6: Absolute errors of the pseudo-Eulerian mean geostrophic speed (left), and of the 
pseudo-Eulerian kinetic energy of the seasonal fluctuations (SKE) (right), calculated as a 
function of the correspondent Eulerian values (𝜖𝜖𝐴𝐴𝑅𝑅𝑅𝑅𝑆𝑆). n and m denotes the polynomial degree and 
the number of harmonics used in the model proposed in Equation (3), while the red, green, black 
and blue curves correspond to values of 2, 3, 4 and 5 of each parameter. The shading around each 
line are 95% confidence margins, and the thin dashed line marks the 1:1 signal-to-noise ratio limit.  
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Figure 7:  Pseudo-Eulerian mean geostrophic speed estimates for the Loop and Florida Currents, 
obtained from data selected within circular bins with radii equivalent to 0.5° (left column), 1° 
(middle) and 1.5° (right) degrees longitude. From top to bottom, the mean fields were 
respectively calculated via bin-averaging (e.g. Fratantoni, 2001), 1-D and 2-D polynomial fitting 
via Gauss-Markov estimation (GME) (e.g. Lumpkin and Johnson, 2013), and 1-D and 2-D least-
squares smooth spline fitting (LSS) (e.g. Bauer et al., 1998).  
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Figure 8: Same as Figure 6 for the pseudo-Eulerian mean geostrophic speed (left panels, a, c, 
and e) and the eddy kinetic energy (EKE) (right, b, d, and f ), considering bin radii equivalent to 
0.5° (panels a and b), 1° (c and d) and 1.5° (e and f ) degrees longitude. Here, the 𝜖𝜖𝐴𝐴𝑅𝑅𝑅𝑅𝑆𝑆of both 
quantities is calculated as a function of the reference Eulerian mean speed. The red, black, and 
blue lines, respectively, refer to results obtained via bin-averaging (e.g. Fratantoni, 2001), 
polynomial fitting via Gauss-Markov estimation (GME) (e.g. Lumpkin and Johnson, 2013), and 
least-squares smoothing splines (LSS) (e.g. Bauer et al., 1998). The solid and dashed lines 
denote 1-D and 2-D versions of each curve fitting method.  
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Figure 9: Panels (a) and (c) respectively show global maps of the absolute errors (𝜖𝜖𝐴𝐴) of pseudo-
Eulerian mean and seasonal geostrophic speed. The diagrams in (b) and (d) depict the root mean 
square value of 𝜖𝜖𝐴𝐴 estimates (𝜖𝜖𝐴𝐴𝑅𝑅𝑅𝑅𝑆𝑆), subsampled as a function of the square roots of the number 
of drifter observation days (N ) and of the reference Eulerian EKE from the fields in (a) and (c), 
respectively. The black contours in (b) and (d) delineate the number of 𝜖𝜖𝐴𝐴 values used in the 
calculation of 𝜖𝜖𝐴𝐴𝑅𝑅𝑅𝑅𝑆𝑆; gray shading masks regions where the number is smaller than 30.  
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Figure 10: Similar to Figure 9, but showing the ratio between absolute (𝜖𝜖𝐴𝐴) and standard errors 
(𝜖𝜖𝑆𝑆𝑆𝑆).  
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Figure 11: Similar to Figure 9, for (a) SKE and (b) EKE.  
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Figure 12: Difference between the kinetic energy of seasonal fluctuations (SKE) and eddy 
residuals (EKE) estimated using data from drogued-only and from both drogued and undrogued 
drifters. The left (right) panels show the spatial (histogram) distribution of the kinetic energy 
differences, where (a), (b), (e), and (f ) are obtained using slip-corrected drifter velocity 
observations, and (c), (d), (g), and (h) are based on AVISO geostrophic velocities subsampled at 
the drifter locations. The blue lines overlaid on the histograms are best-fit non-parametric kernel 
functions, while the red lines correspond to results obtained for drifter velocities not corrected 
for downwind slip.  
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Figure 13: Pseudo-Eulerian mean speed maps for the Gulf of Mexico and the western North 
Atlantic (top, panels a and b), and for the Nordic seas (bottom, c and d), calculated from drifter 
observations. The left panels (a, c) are estimated using the method described in Lumpkin and 
Johnson (2013), while in the right (b, d) they are obtained via the updated procedure presented in 
this work.  
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Figure 14: Global maps of the pseudo-Eulerian mean zonal and meridional velocities (panels a 
and b, respectively), and of the mean speeds (c), calculated from GDP drifter observations using 
the decomposition method proposed in this work. The curly vectors in (c) are streamlines 
calculated using the data depicted in (a) and (b), to indicate the general direction of the large-
scale circulation. 
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